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Chatenay-Malabry, France, and dLaboratoire Léon Brillouin (CEA-CNRS, UMR 12), Centre d’Etudes

de Saclay, 91191 Gif-sur-Yvette, France. Correspondence e-mail:

mohamed.souhassou@crm2.uhp-nancy.fr

New crystallographic tools were developed to access a more precise description

of the spin-dependent electron density of magnetic crystals. The method

combines experimental information coming from high-resolution X-ray

diffraction (XRD) and polarized neutron diffraction (PND) in a unified model.

A new algorithm that allows for a simultaneous refinement of the charge- and

spin-density parameters against XRD and PND data is described. The resulting

software MOLLYNX is based on the well known Hansen–Coppens multipolar

model, and makes it possible to differentiate the electron spins. This algorithm is

validated and demonstrated with a molecular crystal formed by a bimetallic

chain, MnCu(pba)(H2O)3�2H2O, for which XRD and PND data are available.

The joint refinement provides a more detailed description of the spin density

than the refinement from PND data alone.

1. Introduction

Electron density, in all its representations, plays a key role in

the understanding of the nature of chemical bonds. The

tremendous improvement of X-ray sources, detectors and

software has significantly increased the resolution and the

quality of diffraction data, allowing a precise determination of

the atomic electron distribution when a multipolar model is

used (Stewart, 1976; Hirshfeld, 1977; Hansen & Coppens,

1978).

According to the Hohenberg–Kohn theorem (Hohenberg &

Kohn, 1964), if such an approach was to yield an exact

experimental electron density, every other piece of informa-

tion for the system (at least in the ground state) would be

within reach. However, to this day, and despite the efforts

of a large community of crystallographers, experimental

charge-density modelling has not reached this stage. Addi-

tional information can be obtained in the case of magnetic

materials by polarized neutron diffraction. This technique has

proved to be a valuable tool for determining the electronic

spin distribution. In addition, inelastic X-ray scattering (in the

high momentum and energy transfer regime) turns out to be

highly sensitive to the most delocalized electrons. Therefore,

this spectroscopy should be considered as very complemen-

tary to the previously cited coherent elastic scattering tech-

niques.

From the X-ray and neutron scattering standpoint, the one-

particle reduced-density matrix (1-RDM) can be seen as a

unifying quantity (Gillet, 2007). The definition of the 1-RDM

derives from the N particles wavefunction  ðx1; x2; . . . ; xNÞ,

where xj stands for both the position rj and the spin coordinate

of particle j,

�1ðx1 x01Þ

¼ N
R
 �ðx1; x2; . . . ; xNÞ ðx

0
1; x2; . . . ; xNÞ d

4x2 . . . d4xN

for a pure state.

The charge �"ðrÞ þ �#ðrÞ and spin �"ðrÞ � �#ðrÞ densities

are related to the ‘diagonal part of the 1-RDM’; they are

obtained by merely integrating over all the spin variables and

setting r01 ¼ r1 ¼ r:R
�ðs� s"Þ � �ðs� s#Þ
� �

�1 x; x0ð Þx¼x0 ds ¼ �"ðrÞ � �#ðrÞ:

The diagonal part of the 1-RDM can thus be recovered

from X-ray and polarized neutron diffraction.

Several papers report on the possibility of recovering the

full 1-RDM from X-ray diffraction data only either by jointly

minimizing the resulting energy (Jayatilaka & Grimwood,
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2001) or imposing mathematical constraints such as idempo-

tency (Massa et al., 1985; Howard et al., 1994). It is noteworthy

that attempts to combine X-ray and polarized neutron data

were first proposed by Becker & Coppens (1985), followed by

other members of Coppens’ group (Coppens et al., 1986, 1999;

Koritsanszky & Coppens, 1986) without significant success.

This paper is dedicated to the simultaneous determination

of the charge and spin densities in a unified refinement

strategy. Until now they have instead been determined sepa-

rately, and interpreted conjointly (Williams et al., 1981; Figgis

et al., 1989; Claiser et al., 2005). We therefore describe in this

paper how to build a phenomenological model gathering data

originating from different diffraction experiments such as

X-ray (XRD), unpolarized neutron (UND) and polarized

neutron (PND) diffraction. This paper is mostly oriented

towards methodological aspects:

(a) How to combine different sets of data?

(b) How to build a common model adapted to a joint

refinement?

(c) How to fruitfully exploit this new model?

This proposed method is then validated and demonstrated

with a molecular bimetallic chain system, composed of MnII

and CuII ions antiferromagnetically coupled through an

oxamato bridge (Baron et al., 1997; Pillet et al., 2004).

The implementation of the joint refinement algorithm in the

new software MOLLYNX and the appropriate refinement

strategy are presented in x2. The application of the joint

refinement procedure to the consecutive determination of the

charge density, spin density and spin-dependent charge

densities is discussed in detail in x3.

2. Methodology for modelling charge and spin densities

Charge- and spin-density distributions can be obtained sepa-

rately from XRD and PND data, respectively, using the

Hansen & Coppens multipolar model (Hansen & Coppens,

1978) in which the atomic charge density is given by

�ðrÞ ¼ �coreðrÞ þ Pv�
3�vð�rÞ þ

Plmax

l¼0

�03Rlð�
0rÞ
Pl

m¼0

Plm�ylm�ð�; ’Þ;

ð1Þ

where �core and �v are the core and valence spherical contri-

butions to the charge density. The deformation charge density

is developed on real spherical harmonic functions ylm�ð�; ’Þ,
with radial extension Rlð�rÞ usually of Slater type. Pv and

Plm� are the valence and multipolar population parameters,

respectively. � and �0 are the contraction/expansion para-

meters. The refined parameters of the model are Pv, Plm�, �
and �0. The spin density is modelled in a similar manner, as

described by Brown et al. (1979), Ressouche et al. (1993) and

Zheludev et al. (1994):

sðrÞ ¼ P s
v�

3�vð�rÞ þ
Plmax

l¼0

�03Rlð�
0rÞ
Pl

m¼0

P s
lm�ylm�ð�; ’Þ; ð2Þ

where P s
v is the population of the valence electrons with

unpaired spin, and P s
lm�, � and �0 are the refined spin-density

parameters. The assumption has been made that there is no

core contribution to the spin density.

As the charge and spin densities are described by a similar

multipolar atom-centred model with a common para-

meterization, it makes a combined treatment of the two

quantities possible. For this purpose, the valence populations

(Pv), multipolar populations (Plm�) and expansion/contraction

parameters (�; �0) may be split for magnetic atoms (atoms

carrying a spin magnetic moment) into two components with

respect to the spin (up or down). The charge density

(respectively, spin density) is simply the sum (respectively,

difference) of the up-spin and down-spin electron densities as

given in equation (3) [respectively, (4)].

�ðrÞ ¼ �"ðrÞ þ �#ðrÞ

¼ �coreðrÞ þ P"v�
"3
�"v ð�

"rÞ þ P#v �
#3
�#v ð�

#rÞ

þ
Plmax

l¼0

�0"
3
Rlð�

0"rÞ
Pl

m¼0

P
"

lm�ylm�ð�; ’Þ

þ
Plmax

l¼0

�0#
3
Rlð�

0#rÞ
Pl

m¼0

P
#

lm�ylm�ð�; ’Þ; ð3Þ

sðrÞ ¼ �"ðrÞ � �#ðrÞ

¼ P"v �
"3
�"v ð�

"rÞ � P#v�
#3
�#v ð�

#rÞ

þ
Plmax

l¼0

�0"
3
Rlð�

0"rÞ
Pl

m¼0

P
"

lm�ylm�ð�; ’Þ

�
Plmax

l¼0

�0#
3
Rlð�

0#rÞ
Pl

m¼0

P
#

lm�ylm�ð�; ’Þ: ð4Þ

P"v and P#v are the spin-dependent valence populations, while

P
"

lm� and P
#

lm� are the spin-dependent multipolar populations.

The sum of the spin-dependent valence populations is equal to

the valence population Pv in equation (1), while the difference

corresponds to the spin valence population P s
v in equation (2).

Non-magnetic atoms are simply described by equation (1). In

the most general case, the spin-up and spin-down distributions

may not have identical radial extension. This can be taken into

account by defining different spin-dependent contraction–

expansion parameters �"=�# and �
0"=�

0#.

In order to combine these data, the following assumptions

have been made:

(a) The cell parameters used are those obtained from the

single-crystal X-ray experiments, since they are usually better

estimated from X-ray than from neutron experiments.

(b) Two sets of thermal displacement parameters are

refined, one for the X-ray data and one for the neutron data,

due to the possible difference between static and dynamic

disorder [small (X-ray) and large (neutron) crystals].

(c) Constraints on electroneutrality and total magnetic

moment are implemented using the Hamilton method

(Hamilton, 1965).

In this joint refinement strategy, the sum of the spin valence

populations over the atoms of the molecular unit is

constrained to be equal to the number of unpaired electrons

corresponding to the total spin state of the molecular unit,

estimated from chemical grounds. Therefore, the scale factor

research papers

676 Maxime Deutsch et al. � Spin-dependent electron density Acta Cryst. (2012). A68, 675–686



refined for PND in this work provides a value of the net

magnetization of the single-crystal sample under the condi-

tions of magnetic field and temperature during the PND data

collection. It may be directly compared with magnetization

measurements [superconducting quantum interference device

(SQUID) measurements] under the same conditions of

magnetic field and temperature.

The joint refinement algorithm implemented in the new

software MOLLYNX is based on the usual least-squares

procedure, for which the minimized function �2 is defined as

�2ðpÞ ¼
P
H

FO
H � FC

HðpÞ
�� ��2=�2ðFO

H Þ;

where p stands for all parameters of the model (scale factors,

atomic positions x, y, z, atomic displacement parameters Uij
X,

Uij
N, multipolar population Plm . . . ), H runs over all the

measured/calculated structure-factor amplitudes FO/FC, �
being the estimated standard deviation of FO, and

FC
ðHÞ ¼

P
j

fjðHÞ expð2i�H � rÞTjðHÞ;

where TjðHÞ is the Debye–Waller factor,

fjðHÞ ¼
1� 1

2
fcoreðHÞ þ P"v fvðH=�

"Þ � P#v fvðH=�
#Þ

þ
Xlmax

l¼0

�lðH=�
0"Þ
Xl

m¼0

P"
lm�

ylm�ðH=HÞ

�
Xlmax

l¼0

�lðH=�
0#
Þ
Xl

m¼0

P#
lm�

ylm�ðH=HÞ;

where + and � hold for XRD and PND, respectively. When

dealing with different data sets for one common model, the

question of the weighting scheme naturally arises. It then

becomes essential to construct a function to minimize, possibly

based on individual �2, assigning a fair weight to each data set.

The section below describes the weighting schemes that have

been considered for such a joint refinement.

2.1. Weighting schemes

One of the main concerns in the joint refinement strategy is

the weighting scheme for the different data sets, because we

deal with an almost complete high-resolution X-ray data set

(~10 000 reflections for a maximal resolution of about 1 Å�1)

compared to a medium resolution and incomplete neutron

data set (~1000 reflections for UND and a few hundreds for

PND, with a maximal resolution of about 0.5 Å�1). Three

weighting schemes have been considered:

(i) The first scheme uses a score function C that minimizes

the sum of the �2 values of each experiment. This weight

usually favours the experiment that provides a large data set;

such a model has been used, for example, in the joint refine-

ment of H atoms in structural (Duckworth et al., 1969) and

charge-density studies (Coppens et al., 1981), in the powder-

diffraction community (Williams et al., 1988) and for joint

X-ray and neutron protein-structure refinements (Wlodawer

& Hendrickson, 1982; Adams et al., 2009). The minimized

function is defined as

C �2
j ðpÞ

� �� �
¼
P

j

�2
j ðpÞ;

where j stands for an experiment (X-ray, neutron, . . . ) and p

refers to the parameters of the model. The individual �2
j ðpÞ

function is defined as

�2
j ðpÞ ¼

P
i

F
j O
i � F

j C
i ðpÞ

�� ��2=�2ðF
j O
i Þ;

where i runs over all the measured/calculated structure-factor

amplitudes FO/FC and � is the estimated standard deviation

associated with FO. The derivative of C is the sum of the

gradients of individual �j
2,

~rrC �2
j ðpÞ

� �� �
¼
P

j

~rr�2
j ðpÞ;

and the inverse of the covariance matrix is the sum of the

individual inverse of the covariances:

@2C �2
j ðpÞ

� �� �
@pl@pk

¼
X

j

@2�2
j ðpÞ

@pl@pk

:

This weighting scheme is called hereafter UNIT.

(ii) The second weighting scheme, called ‘total ignorance

weighting scheme’, was proposed by Bell et al. (1996) and

Gillet et al. (Gillet et al., 2001; Gillet & Becker, 2004; Gillet,

2007); it is based on the logarithm of �2, which reduces the

weighting ratio between large and small data sets and hence

should better take into account the contribution of the small

data set (at least at the beginning of the refinement proce-

dure). Another reason for using this weighting scheme origi-

nates from the large variation of standard-deviation estimates

from one data-reduction method (software dependent) to

another. The ‘total ignorance’ scheme is built upon the

assumption that there exists an overall scaling uncertainty on

each standard-deviation set:

C �2
j ðpÞ

� �� �
¼
P

j

Nj logð�2
j ðpÞÞ;

where Nj stands for the number of measured data in the jth

experiment,

~rrC �2
j ðpÞ

� �� �
¼
X

j

Nj

~rr�2
j ðpÞ

�2
j ðpÞ

;

@2C �2
j ðpÞ

� �� �
@pl@pk

¼
X

j

Nj

@2�2
j ðpÞ

@pl@pk

1

�2
j ðpÞ
�
@�2

j ðpÞ

@pl

@�2
j ðpÞ

@pk

1

�2
j ðpÞ

 !2" #
:

Hereafter, this weighting scheme will be referred to as NLOG.

In this model the logarithm function is scaled by the size of the

data set (N) and it also leads to a weight ratio equivalent to the

sample sizes ratio, which slightly favours the large data set.

(iii) We therefore decided to introduce a third weighting

scheme based only on the sum of logarithms. The score

function and its derivatives are
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C �2
j ðpÞ

� �� �
¼
X

j

logð�2
j ðpÞÞ; ~rrCð�2

j ðpÞÞ ¼
X

j

~rr�2
j ðpÞ

�2
j ðpÞ

@2C �2
j ðpÞ

� �� �
@pl@pk

¼
X

j

@2�2
j ðpÞ

@pl@pk

1

�2
j ðpÞ
�
@�2

j ðpÞ

@pl

@�2
j ðpÞ

@pk

1

�2
j ðpÞ

� �2
:

This weighting scheme is hereafter called LOG.

In principle, the NLOG or LOG scheme may prevent the

neglect of small data sets. It actually turns out that these

different weighting schemes seem to lead to the same ‘global

minimum’. However, as they do not have the same ‘local

minima’, a change of the weighting scheme during the

refinement would be a possible way to escape from a false

‘local minimum’.

For the test example (see below) the ratios between the

XRD and PND weights at the end of the refinement were

typically wX/wPN
’ 20, wX/wPN

’ 44 and wX/wPN
’ 1.4 for the

UNIT, NLOG and LOG weighting schemes, respectively. (The

number of reflections are 6880 and 228 for XRD and PND,

respectively.) However, it should be noted that these

weighting ratios are only global indicators and that some

parameters are essentially determined exclusively by one of

the data sets [see Coppens et al. (1981) for the relative

dependence of some joint parameters]. If no constraints are

applied (see the next section), the spin parameters depend

only on the PND data. The corresponding diagonal matrix

elements therefore have no contribution from the other data

sets and the ‘mixed’ off-diagonal terms are zero.

2.2. Refinement and constraints

This original refinement method has been implemented in

the new software MOLLYNX derived from MOLLY (Hansen

& Coppens, 1978). Table 1 shows the dependence of the

refined parameters against the various data sets, i.e. atomic

positions are refined against XRD and UND data, �=�0 are

determined by both XRD and PND data. The multipolar

parameters P
#"

lm� are common to both XRD and PND if there

is a constraint between the charge- and spin-density para-

meters (see next section).

During the first tests of the refinement, large correlations

were observed between spin-up and spin-down multipolar

parameters. As a consequence, in some cases spin populations

turned out to be larger than charge populations for a given

multipole (i.e. more unpaired electrons than total electrons).

As shown by Table 1, these correlations are a direct conse-

quence of the joint refinement procedure during which the

XRD data fix the charge-density parameters,

whereas PND data are used to fit the spin

population without any physical relationship

between the two densities except the radial

extension. Such a joint refinement must there-

fore be constrained in order to ensure that the

charge density in a given multipole is always

greater than the spin density. This can be

formally expressed as

P
"

lm� þ P
#

lm�

�� �� � P
"

lm� � P
#

lm�

�� ��:
A first brute-force possibility to enforce this constraint on the

split multipoles is the following: if after one cycle of least-

squares refinement up and down populations of a given

multipole lead to a spin population larger than the charge one,

then the spin population is set equal to the charge population

to satisfy the previous relation. This constraint is an a

posteriori constraint applied after each refinement cycle. This

is unsatisfactory, since there remains a possibility that the next

iteration will end up similarly.

A more efficient way to satisfy the previous inequality is to

use a bounded function such as ‘cos(	)’:

P
"

lm� � P
#

lm� ¼ cosð	ÞðP"lm� þ P
#

lm�Þ:

Then refining 	 and the charge-density multipoles ðP
"

lm�

þ P
#

lm�Þ is equivalent to refining P
"

lm� and P
#

lm�. The main

disadvantage of this method is that it leads to a nonlinear

least-squares refinement. To reduce this effect, we added the

second derivatives with respect to 	 to the least-squares

process. (See Appendix A for more computational details.)

3. Application, results and discussion

In order to test the joint refinement procedure, we chose

as a prototype system the bimetallic chain compound

MnCu(pba)(H2O)3�2H2O, where pba is 1,3-propylene

bis(oxamato) (Fig. 1), for which a detailed charge-density

(at 114 K) and a spin-density (at 10 K) analysis have been

reported by Pillet et al. (2004) and Baron et al. (1997) from

XRD and PND measurements, respectively.
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Table 1
Refined parameters for each type of data set.

Sc is the scale factor, Uij are the anisotropic atomic displacement parameters. * indicates the
data set used if the cos(	) constraint is applied (see text).

Data set ScX ScN ScPN �, �0 x, y, z UijX UijN

P"v þ P#v ,

P
"

lm þ P
#

lm

P"v � P#v ,

P
"

lm � P
#

lm

XRD � � � � � �*
UND � � �

PND � � �* �

Figure 1
ORTEP representation of the Mn—Cu chain structure at 10 K; thermal
displacement ellipsoids are plotted at the 50% probability level.
Symmetry codes: (i) x, 1/2 � y, z, (ii) �x, �y, �z.



This molecular crystal is built from infinite oxamato-bridged

MnII–CuII chains running along the crystallographic b axis in

the orthorhombic space group Pnma (Fig. 2) (Pei et al., 1987).

The Mn atom lies on an inversion centre in an elongated

octahedral coordination, while Cu, O5, C4, H1 and H2 lie

on a mirror plane (H atoms are omitted in the figure). The

water molecule (O4) is located in the elongated apical

direction [Mn—O4 = 2.1894 (5) Å], whereas the axial posi-

tions are occupied by the O1 and O2 atoms of the oxamato

bridge [Mn—O basal = 2.1645 (4) and 2.1812 (5) Å]. The Cu

atom is located on a crystallographic mirror plane in a

pyramidal environment coordinated by one water molecule

(O5) in the apical direction and two atoms (O, N and

symmetry equivalents) in the basal plane, 0.245 Å below the

Cu position.

Neighbouring chains are connected in the ac plane by four

short hydrogen bonds involving the O1 and O2 atoms and the

lattice water molecule O6. The O� � �H distances range from

1.89 (2) to 2.22 (2) Å. This is a quasi-one-dimensional crystal

structure which involves similar long distances between the

magnetic centres within [Mn� � �Cu = 5.4325 (1) Å] and

between the chains [Mn� � �Mn = 6.8642 (1) and Cu� � �Cu =

6.4415 (2) Å].

The CuII and MnII cations are coupled antiferro-

magnetically through the oxamato bridge by a superexchange

mechanism (Fig. 2), leading to a magnetic behaviour typical

for one-dimensional ferrimagnetic ordered chains with weak

interchain couplings (Pei et al., 1987).

Since the charge-density study had been carried out at a

much higher temperature than the spin-density study, a new

high-resolution XRD data set at 10 K was collected to match

closely the PND experiment; 61 774 reflections were collected

with Mo K	 radiation using a Supernova diffractometer

equipped with a Helijet cryogenic system.1 The data were

corrected for absorption (Tmin = 0.64 and Tmax = 0.88), yielding

8505 unique reflections (Rint = 0.0341) of which NX = 6880 [I >

3�(I)] were used for the joint refinement to a maximum

resolution of (sin �/
)max = 1.13 Å�1. The number of reflec-

tions in the PND data set is NPN = 228 up to a maximum

resolution of (sin �/
)max = 0.49 Å�1 (Baron et al., 1997) (see

Table 2 for details).

To check the reliability of the joint refinement procedure, in

the following we discuss in turn (i) the refinement of the

charge density against the XRD data only (MOLLY), (ii) the

refinement of the spin density against the PND data only

(MFLOP ; Boucherle et al., 1982) and (iii) the joint refinement

itself using the new software MOLLYNX. The first two studies

will serve as benchmarks for the separated charge and spin

densities prior to the joint XRD–PND treatment.

3.1. Benchmark charge-density refinement: XRD only

In order to model the total charge density at 10 K, a Hansen

and Coppens multipolar refinement (Hansen & Coppens,

1978) was performed against the 6880 structure-factor ampli-

tudes (F) with intensities I > 3�(I). The atomic positions and

atomic displacement parameters of non-H atoms were first

refined against high-order reflections (sin �/
 > 0.8 Å�1) to

deconvolute the valence electron density from thermal

smearing effects, leading to the best unbiased refined struc-

tural parameters. In this test case, UND data were not used.

As a consequence, the atomic positions of H atoms may be

biased. To circumvent this effect, the H atoms were displaced

along their X—H bond to distances from tabulated values

(Allen et al., 1992). Then the valence- and symmetry-allowed

multipolar parameters were refined until convergence with

multipolar expansion (l) up to l = 4 for Cu, Mn, O and N

atoms, and l = 3 for C atoms, while for all H atoms only the

valence population and a dipole directed along the X—H

bond were refined. Core and spherical valence charge densi-

ties were constructed using Clementi and Roetti Hartree–

Fock wavefunctions (Clementi & Roetti, 1974), and the radial

functions for the deformation density were single Slater-type

functions with nl and �l as reported in Table 3.

A unique �, �0 parameter set was used for each atomic type;

�0(H) was not refined. The final model with 422 parameters

and 6880 reflections [I > 3�(I)] led to R(F) = 2.16%, Rw(F) =

1.61% and to a goodness of fit (GOF) of 1.58.
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Figure 2
Crystal packing and spin magnetic moments of Mn and Cu aligned by an
applied field along the crystallographic a axis (vertical).

Table 2
XRD and PND experimental conditions.

Chemical formula: MnCu(pba)(H2O)3�2H2O (MnCuC7N2O11H16). Space
group: Pnma; cell parameters: a = 12.7858 (5), b = 21.2972 (8), c = 5.1864 (2) Å.

Experiment

X-ray Polarized neutron

No. of unique reflections 6880 [I > 3�(I)] 228
Temperature (K) 10 10
Wavelength (Å) 0.71073 0.83
Maximum sin �/
 (Å�1) 1.13 0.49

1 Supplementary material for this article is available from the IUCr electronic
archive (Reference: WL5162). Services for accessing this material are
described at the back of the journal.



The featureless residual density map (Fig. 3a) attests to

the XRD data quality and the relevance of the multipolar

modelling. The static deformation density map (Fig. 3b)

presents similar features to the 114 K data (Pillet et al., 2004)

with the main improvement being in the resolution of the

lone-pair density of the O and N atoms due to the lower

thermal smearing effect.

3.2. Benchmark spin-density refinement: PND only

In the previous study (Baron et al., 1997) the spin-density

refinement was performed against the experimental magnetic

structure-factor amplitudes derived from the flipping ratios,

which are the raw PND experimental quantities (Lecomte et

al., 2011). The published spin-density map was obtained using

an (x2
� y2) orbital constraint on the Cu atomic spin density,

which slightly improved the agreement factors from a sphe-

rical refinement. In the MOLLYNX software, the model

parameters are refined against the flipping ratios. In order to

compare the quality of the results of the refinement using

PND data alone with that obtained by joint refinement, a

spherical-atom refinement was performed on the PND data

only using MFLOP (Boucherle et al., 1982). It led to the

following agreement factors: R(R) = 5.84%, Rw(R) = 2.42%

and a goodness of fit (GOF) of 1.93. The spin populations

normalized to 2 mB per asymmetric unit are reported and

compared to the joint refinement in Table 6. Note that the

normalization is different to that applied by Baron and co-

workers (Baron et al., 1997), who set the sum of the spin

populations of Mn, Cu and the bridging atoms equal to 4 mB.

Different models were tested: the best fit was obtained when

the spin density located on the Cu atom was restrained to

arise from an (x2
� y2)-type orbital pointing toward the O

and N atoms. This model improved the statistical agreement

factor without changing the spin values on atoms with respect

to their standard deviation, as shown by Baron et al. (1997)

(Fig. 4).

3.3. Joint refinement strategy

The starting point of the joint refinement strategy was based

on the charge- and spin-density multipolar models derived

separately from the XRD and PND data, respectively, as

discussed above. In order to have the best set of structural

parameters, the atomic positions and X-ray atomic displace-

ment parameters (x, y, z and Uij
X) obtained from the previous

multipolar refinement (XRD data only) were kept fixed and
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Figure 3
Charge density at 10 K. (a) Residual charge-density map (sin �/
 <
0.8 Å�1). (b) Static deformation charge-density map after the multipolar
refinement (XRD data only) in the plane of the oxamato bridge.
Contours are at intervals of 0.1 e Å�3.

Table 3
The nl and �l parameters of Slater-type functions used in the multipolar
refinement.

Atom type nl �l (bohr�1)

Cu 4, 4, 4, 4, 4 8.80
Mn 4, 4, 4, 4, 4 7.00
O 2, 2, 2, 3, 4 4.46
N 2, 2, 2, 3, 4 3.84
C 2, 2, 2, 3 3.18
H 1, 1 2.00

Figure 4
Projection of the spin density obtained from PND refinement with the x2

� y2 constraint from Baron et al. (1997). (Contours are at 0.005 � 2n�1

�B Å�2 with n = 1, 2, . . . ).



the neutron atomic displacement parameters obtained in the

previous study (Baron et al., 1997) were not refined. Magnetic

atoms (i.e. those expected to carry a significant spin magnetic

moment) were defined according to the results of the bench-

mark spin-density results discussed above. They consist of the

metallic atoms (Mn and Cu) and the atoms of the linking

oxamato bridge (O1—O4, N, C1 and C2). For all those atoms,

a split model [see equations (3) and (4)] was defined; their

initial valence population parameters were set to half the

values obtained in the benchmark XRD refinement. The Mn

and Cu valence populations were introduced such thatP
ðP"v � P#v Þ matches the number of unpaired electrons

corresponding to the S = 2 state of the molecular unit formed

by an MnII ion (s = 5/2) and a CuII ion (s = 1/2) that are

antiferromagnetically coupled. This number is equal to 2 for

the asymmetric unit, because Mn and Cu both lie on a

symmetry element.

In the first step, it is important to assess what information

can be extracted from both data sets with the joint refinement.

For that purpose, a first refinement strategy was adopted as

follows:

(1) The structural model of the benchmark XRD refine-

ment was assumed, with the atomic displacement parameters

of the benchmark XRD refinement kept fixed.

(2) Initially, all multipolar parameters Plm� were set to zero.

(As a test case, to start with the least-biased model.)

(3) Then a Pv–� joint refinement was performed (Coppens

et al., 1979).

(4) This was followed by a charge multipolar refinement

against the XRD only.

(5) Finally, the joint charge- and spin-density multipolar

refinement was performed.

The refinements were carried out using the three weighting

schemes (UNIT, NLOG, LOG) and the three types of

constraints between the multipolar parameters [uncon-

strained, a posteriori and cos(	) constraints].

In the following, the results of these refinements are

compared in detail step by step.

3.3.1. Pv–j joint refinement. In the first step, a Pv–� joint

refinement was conducted with all the multipolar parameters

Plm� set to zero. The results are analyzed with respect to the

refinement statistical agreement factors (given in Table 4) and

the values of the refined parameters (given in Tables 5 and 6).

The refinement of the valence population, P"v and P#v , using

the three weighting schemes gave exactly the same statistical

agreements and the same parameter values. The further

refinement of � slightly improved the statistical agreements for

X-ray data while for PND it increased the agreement factors

for UNIT and NLOG weight; for the LOG weighting scheme

they remain unchanged (Table 4).

With respect to their uncertainties, the � values are statis-

tically equal when using the three weighting schemes, except

for Mn for which the � value is slightly different with the LOG

weighting scheme (Table 5). For example, for Mn, the differ-

ence is between 5 and 20�. The refinement of �" and �#

parameters for Cu and other atoms gave the same values

within the standard deviation; it is noteworthy that for Mn

splitting of the � parameter was not possible since P#v is almost

zero, it was therefore decided in the further refinements not to

split the � parameters for all atoms; it also decreases the

number of total parameters of the global model and avoids

over-parameterization. This also makes it possible to achieve a

better stability of the least-squares procedure by limiting the

number of correlations.

The valence populations obtained after these refinements

are summarized in Table 6; they are equal whatever the

weighting schemes. Standard deviations are almost the same

for UNIT and NLOG schemes but slightly smaller when using

the LOG weighting scheme.

The spin-population values resulting from the joint refine-

ment compare well with those of the refinement using only

PND data. The resulting spin-density distribution shows spin

up located on Mn and spin down on Cu, and a delocalization

over the oxamato bridge, with positive spin contributions on

the atoms in the neighbourhood of Mn and negative spin

contributions on the Cu side, as already reported (Baron et al.,

1997). At this stage of the refinement it is therefore not

possible to discriminate between the three weighting schemes.

These results also clearly show that the joint refinement is

very robust and compares quite closely with the separate

XRD-only and PND-only refinements.

3.3.2. Charge. After this joint refinement of the charge and

spin valence populations, a multipolar refinement of the

charge-density parameters (no Plm� splitting) was carried out

and compared to the ‘X-ray only’ refinement. As expected, the

agreement indices dropped significantly for the X-ray data set

(RX = 2.26% Rw
X = 1.73%, GOFX = 1.68, compared to 2.16%,

1.61% and 1.58 for the X-ray only refinement) without, of

course, changing the PND indices. At this point of our test, the

deformation density does not depend on the weighting scheme

and is statistically equal to that refined against X-ray data only.

3.3.3. Spin-density multipolar refinement. At this stage of

the joint refinement, all magnetic atoms exhibit a split valence
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Table 5
Values of the refined � parameters for the different weighting schemes.

� values for H atoms were not refined.

Atom UNIT NLOG LOG

XRD data only
(multipolar
refinement)

Cu 1.021 (4) 1.020 (3) 1.019 (3) 1.002 (1)
Mn 1.032 (6) 1.027 (5) 1.003 (1) 1.010 (2)
O 0.976 (2) 0.975 (2) 0.973 (1) 0.976 (1)
N 0.988 (5) 0.987 (5) 0.990 (5) 0.979 (2)
C 1.048 (5) 1.047 (4) 1.045 (4) 1.006 (2)

Table 4
Statistical agreement factors for Pv–� refinement using different
weighting schemes.

RX (%) Rw
X (%) GOFX RPN (%) Rw

PN (%) GOFPN Weight

2.91 2.87 2.73 8.25 2.98 2.38 UNIT
2.91 2.87 2.73 8.25 2.95 2.36 NLOG
2.91 2.88 2.74 7.55 2.87 2.29 LOG



population while their multipolar parameters are still not split.

Therefore, the present model accounts for the asphericity of

the charge density, but only for the isotropic contribution to

the spin density through the split valence populations. This

approximation may be released by splitting the multipolar

parameters of magnetic atoms, starting from the previous

charge-density multipolar refinement. For this purpose, it is

necessary to define for which atom, and up to which multipole

order, the refinement of the spin multipoles is relevant. The

spin multipoles were split sequentially with increasing order,

and the results were compared in order to ascertain the best

refinement strategy. The joint refinements were performed

using the cos(	) constraint, which is more rigorous. Symmetry-

allowed multipolar parameters for Mn and Cu up to l = 4, only

monopoles and dipoles for the other probable magnetic atoms,

and � and �0 were refined. The other atoms were refined

following the standard manner (against XRD data only). This

initial refinement was then followed by a splitting and

refinement of all O, C and N quadrupoles, keeping the other

parameters fixed (Figs. 5b–7b). The aim of this procedure was

to decide whether there is some decisive non-spherical infor-

mation in the PND data that can be retrieved from the joint

fitting and then to refine the corresponding multipolar para-

meters in a second step.

These refinements were carried out for the three weighting

schemes (UNIT, NLOG and LOG) until convergence. The

corresponding statistical XRD agreement factors (Table 7) are

close to those obtained for the refinement against XRD data

only, while the best PND indices are, not surprisingly, obtained

for the LOG weighting scheme (Rw
PN = 2.11%) followed by

the NLOG weighting scheme (Rw
PN = 2.20%) and finally the

UNIT weighting scheme (Rw
PN = 2.34%).

The resulting density parameters are given in Tables 8 and

9, while the corresponding static deformation charge-density

(Figs. 5a, 6a and 7a) and spin-density maps (Figs. 5b, 6b and

7b) are shown for the different weighting schemes.

Table 8 shows that the � parameters are close whatever the

weighting scheme. It is noteworthy that the refinement with

the NLOG weighting scheme leads to results very close to the

X-ray only refinement as expected: this weighting scheme

favours mainly the X-ray data (x2.1). The deformation

densities obtained in the UNIT and the NLOG refinement are

very similar but slightly different to the LOG ones. The

positive deformation density has a fourfold symmetry (Fig. 7a)

on the Mn atom with lobes directed toward the ligand in the

LOG case; it is very attenuated in the UNIT and the NLOG

cases (Figs. 5a and 6a) with a small reduction (0.1 e Å�3) in the

lone-pair regions of O1, O2 and O3. This is due to the different

Mn and O �0 values (Table 8: �0 varies from 1.34 to 1.15 and

from 0.98 to 0.80, respectively). Several tests showed that this

�0 variation for the O atoms was due only to a strong dipolar

contribution on apical O4. The corresponding spin-density

maps (Figs. 5b–7b) show a large dipole on O1 and a large

quadrupolar contribution on O2 in the UNIT weight case,

while in the LOG scheme there is no such large dipole and the

quadrupolar contribution is similar on the two O atoms. O3

presents a dipole contribution in both cases. The C2 atom is

always in a region of negative spin density while C1 is positive

(UNIT) or slightly negative (LOG) depending on the

weighting scheme.

Table 9 summarizes the spin populations obtained in the

joint refinement compared to the previous study using PND

data only. As expected, the Mn and Cu atoms carry large spin
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Table 6
Valence populations after Pv–� joint refinement and comparison with the values obtained from the benchmark PND refinements.

UNIT NLOG LOG

Atom P"v , P#v P"v � P#v P"v , P#v P"v � P#v P"v , P#v P"v � P#v PND data only

Cu 4.30 (2), 5.14 (2) �0.84 4.30 (2), 5.14 (2) �0.84 4.26 (2), 5.12 (2) �0.86 �0.81 (3)
Mn 4.98 (4), 0.04 (2) 4.94 5.00 (4), 0.04 (2) 4.96 5.10 (2), 0.06 (2) 5.04 5.15 (4)
O1 3.25 (2), 3.23 (2) 0.02 3.25 (2), 3.23 (2) 0.02 3.25 (1), 3.23 (1) 0.02 0.02 (2)
O2 3.28 (2), 3.25 (2) 0.03 3.28 (2), 3.25 (2) 0.03 3.28 (1), 3.25 (1) 0.03 0.01 (1)
O3 3.21 (2), 3.23 (2) �0.02 3.20 (2), 3.23 (2) �0.03 3.20 (1), 3.23 (1) �0.03 �0.05 (2)
O4 3.31 (2), 3.23 (2) 0.08 3.31 (2), 3.23 (2) 0.08 3.31 (1), 3.24 (1) 0.07 0.03 (1)
N 2.65 (3), 2.72 (3) �0.07 2.65 (3), 2.72 (3) �0.07 2.62 (3), 2.71 (3) �0.09 �0.09 (2)
C1 1.76 (2), 1.78 (2) �0.02 1.76 (2), 1.78 (2) �0.02 1.75 (2), 1.78 (2) �0.03 �0.05 (2)
C2 1.78 (2), 1.84 (2) �0.06 1.78 (2), 1.84 (2) �0.06 1.78 (2), 1.85 (2) �0.07 �0.05 (2)

Table 7
Statistical agreement factors after spin-density multipolar refinement
with the cos(	) constraints.

RX (%) Rw
X (%) GOFX RPN (%) Rw

PN (%) GOFPN
Weighting
scheme

2.18 1.63 1.55 7.37 2.34 1.97 UNIT
2.17 1.62 1.54 6.47 2.20 1.85 NLOG
2.19 1.65 1.57 6.42 2.11 1.77 LOG

Table 8
� parameters after the spin-density multipolar refinement.

Atom UNIT NLOG LOG

XRD data only
(multipolar
refinement)

Cu � 1.0156 (8) 1.003 (1) 1.0166 (8) 1.002 (1)
�0 1.03 (1) 1.04 (1) 1.02 (1) 1.04 (1)

Mn � 1.027 (2) 1.012 (2) 1.0222 (7) 1.010 (2)
�0 1.33 (3) 1.34 (3) 1.15 (2) 1.36 (3)

O � 0.9728 (5) 0.9751 (5) 0.9718 (5) 0.976 (1)
�0 0.98 (2) 0.95 (1) 0.80 (1) 0.96 (1)

N � 0.979 (2) 0.973 (2) 0.981 (2) 0.979 (2)
�0 0.89 (2) 0.84 (2) 0.84 (2) 0.87 (2)

C � 1.022 (2) 1.015 (2) 1.016 (2) 1.006 (2)
�0 0.96 (1) 0.90 (1) 0.96 (1) 0.87 (1)



populations which do not depend on the refinement type. The

main discrepancies are observed for C atoms, which carry the

same moment in the PND refinements, while in the joint

refinement C2 is always negative and C1 carries a small

population (’ the standard deviation), the sign of which

depends on the constraints and the weighting scheme used.

This underlines the fact that the standard deviations are a

precise indication of the quality of the modelling.

3.4. Final ‘most reasonable’ joint refinement

From these refinements, it is hard to determine which spin

multipoles must be refined for the ligand atoms, because all

carry a small spin population with a small dipolar or quad-

rupolar contribution (close to their standard deviation), which

can, however, change the shape of the spin distribution on

these atoms. Despite the fact that the information in the PND

data can in principle go up to octopolar level, like the charge

density, the large correlation between multipolar parameters

prevents this information from being extracting properly.

Therefore, in this molecular crystal all the allowed multipoles

up to l = 4 on metal atoms and monopoles only on the ligand

atoms are relevant. This leads to what can be considered as the

‘most reasonable’ refinement. All the symmetry-allowed and

split quadrupoles and hexadecapoles on Mn and Cu were

refined because they are related to 3d orbital populations

(Holladay et al., 1983) and only split monopoles of the

magnetic C, N and O atoms are refined. This approach is a

good way to limit the number of refined parameters.

A flow chart of our proposed joint refinement procedure is

presented in the supplementary material; however, we stress
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Table 9
Spin population ðP"v � P#v Þ after the spin-density multipolar refinement.

Atom UNIT NLOG LOG PND data only

Cu �0.83 (3) �0.84 (3) �0.83 (2) �0.81 (3)
Mn 5.05 (3) 5.13 (4) 5.14 (2) 5.15 (4)
O1 0.01 (2) 0.01 (3) 0.01 (2) 0.02 (2)
O2 0.01 (2) 0.01 (3) 0.02 (2) 0.01 (1)
O3 �0.04 (2) �0.05 (3) �0.07 (2) �0.05 (2)
O4 0.05 (2) 0.04 (3) 0.03 (2) 0.03 (1)
N �0.09 (3) �0.12 (4) �0.11 (2) �0.09 (2)
C1 0.02 (3) 0.01 (4) 0.01 (3) �0.05 (2)
C2 �0.07 (3) �0.04 (4) �0.03 (3) �0.05 (2)

Figure 5
UNIT weighting scheme. (a) Static deformation charge-density map,
contours as in Fig. 3. (b) Spin-density map with quadrupoles. Contours
are at �0.01 � 2n �B Å�3 (n = 0, . . . , 12), positive: red lines, negative:
blue dashed lines.

Figure 6
NLOG weighting scheme. (a) Static deformation charge-density map,
contours as in Fig. 3. (b) Spin-density map with quadrupoles. Contours as
in Fig. 5.



that the joint refinement is at present NOT a routine proce-

dure for obtaining the final parameters. Therefore, careful

analysis of the results is of prime importance and the strategy

of the procedure has to be adapted in each case. If after

preliminary tests a parameter splitting turns out to be irrele-

vant, it is of course possible to return to the previous step and

benefit from a simplification of the model.

This ‘most reasonable’ joint refinement (with the previous

definition of ‘reasonable’) has to be compared with the

refinement using XRD data only or PND data only (Figs. 8

and 9 versus Figs. 3 and 4, see also Table 10). The agreement

factors are very similar: Rw
X(F) = 1.63% and GOFX = 1.58,

Rw
PN(R) = 2.53% and GOFPN = 2.17.

The two distributions are very similar, but it has to be noted

that a joint refinement has the advantage of not imposing any

initial guess of the spin-density asphericity, as necessary for

PND-only refinement (Baron et al., 1997)

4. Conclusion

A joint refinement of charge and spin densities based on two

different sets of XRD and PND data has for the first time been

successfully carried out for a molecular magnetic compound.

Owing to large correlations between the spin- and charge-

density parameters, the application of constraints on the

multipolar parameters is crucial for a stable, realistic joint

refinement. Weighting schemes are of primary importance

when dealing with experiments of different sizes and uncer-

tainties. Despite a lack of rigorous mathematical foundation,

the LOG weighting scheme appears to be the best compro-

mise for combining XRD and PND data sets with different

sizes. It allows the small number of PND data to be taken into

account without any unreasonable influence on the XRD-

based model.
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Figure 8
(a) Residual charge-density map (sin �/
 < 0.8 Å�1); (b) static deforma-
tion charge-density map after the ‘most reasonable’ joint refinement
using the LOG weighting scheme. Contours are at intervals of 0.1 e Å�3.

Figure 7
LOG weighting scheme. (a) Static deformation charge-density map,
contours as in Fig. 3. (b) Spin-density map with quadrupoles. Contours as
in Fig. 5.



We have shown how the joint refinement strategy can be

applied to data sets of different origins provided that one can

construct a common description model. The proposed joint

refinement procedure can obviously evolve when applied to

other compounds. Studies involving the inclusion of other data

such as Compton scattering are underway.

APPENDIX A
Calculation details for cos(a) constraint

The structure factors for X-ray and PND can be expressed as a

function of P
"

lm� and P
#

lm� or PlmC and PlmS (the latter refer to

the charge and spin multipolar populations, respectively):

FX;PNðP
"

lm;P
#

lm; . . .Þ ¼ F 0X;PNðPlmC;PlmS; . . .Þ;

where PlmC ¼ ðP
"

lm þ P
#

lmÞ=2 and PlmS ¼ ðP
"

lm � P
#

lmÞ=2. The

derivatives of structure factors with respect to the charge and

spin parameters are

@F 0X;PNðPlmC;PlmS; . . .Þ

@PlmC

¼
@FX;PNðP

"

lm;P
#

lm; . . .Þ

@P"lm

@P"lm
@PlmC

þ
@FX;PNðP

"

lm;P
#

lm; . . .Þ

@P#lm

@P#lm
@PlmC

and

@F 0X;PNðPlmC;PlmS; . . .Þ

@PlmS

¼
@FX;PNðP

"

lm;P
#

lm; . . .Þ

@P"lm

@P"lm
@PlmS

þ
@FX;PNðP

"

lm;P
#

lm; . . .Þ

@P#lm

@P#lm
@PlmS

:

Using the cos(	) constraint [PlmS ¼ cosð	ÞPlmC], the structure

factors as function of PlmC and cosð	Þ become

F 00X;PNðPlmC cosð	Þ; . . .Þ ¼ F 0X;PNðPlmC; cosð	ÞPlmC; . . .Þ:

The X-ray structure factors depend only on PlmC while the PN

ones depend on PlmC and cosð	Þ. Their derivatives are as

follows.

For XRD

@F 00X
@PlmC

¼
@F 0X
@PlmC

þ
@F 0X
@PlmS

@PlmS

@PlmC

¼
@F 0X
@PlmC

and the second derivative is null.

For PND

@F 00PN

@PlmC

¼
@F 0PN

@PlmS

@PlmS

@PlmC

þ
@F 0PN

@PlmC

¼
@F 0PN

@PlmS

cosð	Þ;

@F 00PN

@Plm

¼
@F 0PN

@PlmS

@PlmS

@	lm

¼ �
@F 0PN

@PlmS

sinð	ÞPlmC:

Second derivatives:

@2F 00PN

@2PlmC

¼ 0;

@2F 00PN

@	lm@PlmC

¼ �
@F 0PN

@PlmS

@PlmS

@	lm

¼ �
@F 0PN

@PlmS

;

@2F 00PN

@2	lm

¼ �
@F 0PN

@PlmS

PlmC cosð	Þ:

These second derivatives were added to the inverse of the

covariance matrices.
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Table 10
Spin populations of atoms after the ‘most reasonable’ joint refinement
(LOG weighting).

Atom ðP"v � P#v Þ PND data only ðP"v þ P#v Þ XRD data only

Cu �0.85 (3) �0.81 (3) 9.91 (3) 9.92 (4)
Mn 5.13 (2) 5.15 (4) 5.38 (2) 5.39 (4)
O1 0.01 (2) 0.02 (2) 6.39 (2) 6.40 (3)
O2 0.01 (2) 0.01 (1) 6.39 (2) 6.40 (3)
O3 �0.04 (2) �0.05 (2) 6.37 (2) 6.38 (3)
O4 0.05 (2) 0.03 (1) 6.46 (2) 6.47 (3)
N �0.10 (5) �0.09 (2) 5.25 (5) 5.27 (6)
C1 �0.02 (4) �0.05 (2) 3.85 (4) 3.83 (5)
C2 �0.05 (4) �0.05 (2) 3.87 (4) 3.85 (5)

Figure 9
Spin density obtained by the ‘most reasonable’ joint refinement.
Contours are at �0.01 � 2n �B Å�3 (n = 0, . . . , 12). Positive: red (Mn),
negative: blue (Cu).
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